Boost C++ Libraries Home Libraries People FAQ More

PrevUpHomeNext

Map and multimap-like interface for associative containers

Implementing map-like intrusive containers is not a trivial task as STL's std::map and std::multimap containers store copies of a value_type which is defined as std::pair<const key_type, mapped_type>. In order to reproduce this interface in Boost.Intrusive it shall require that objects stored in the intrusive containers contain that std::pair member with pair.first hardcoded as the key part and pair.second hardcoded as the mapped_type, which is limiting and also not very useful in practice. Any intrusive associative container can be used like a map using advanced lookup and insertions and the user can change the key type in each lookup/insertion check call.

On the other hand, in many cases containers are indexed by a well-known key type, and the user is forced to write some repetitive code using advanced lookup and insertions. Boost.Intrusive associative containers offer an alternative to build a useful map-like lookup interfaces without forcing users to define value_types containing std::pair-like classes. The option is called boost::intrusive::key_of_value.

If a user specifies that option when defining a set/multiset intrusive container, it specifies a function object that will tell the container which is the type of the key that value_type holds and how to obtain it. This function object must be:

Let's see an example of how a set can be configured as a map indexed by an integer stored in the value_type:

#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/intrusive/set.hpp>
#include <boost/intrusive/unordered_set.hpp>
#include <vector>
#include <cassert>

using namespace boost::intrusive;

class MyClass : public set_base_hook<>
              , public unordered_set_base_hook<>
{
   public:
   int first;
   explicit MyClass(int i) : first(i){}
};

//key_of_value function object, must:
//- be default constructible if the container constructor requires it
//- define the key type using "type"
//- define an operator() taking "const value_type&" and
//    returning "type" or "const type &"
struct first_int_is_key
{
   typedef int type;

   const type & operator()(const MyClass& v) const
   {  return v.first;  }
};

//Define omap like ordered and unordered classes 
typedef set< MyClass, key_of_value<first_int_is_key> > OrderedMap;
typedef unordered_set< MyClass, key_of_value<first_int_is_key> > UnorderedMap;

int main()
{
   BOOST_STATIC_ASSERT((boost::is_same<  OrderedMap::key_type, int>::value));
   BOOST_STATIC_ASSERT((boost::is_same<UnorderedMap::key_type, int>::value));

   //Create several MyClass objects, each one with a different value
   //and insert them into the omap
   std::vector<MyClass> values;
   for(int i = 0; i < 100; ++i)  values.push_back(MyClass(i));

   //Create ordered/unordered maps and insert values
   OrderedMap   omap(values.begin(), values.end());
   UnorderedMap::bucket_type buckets[100];
   UnorderedMap umap(values.begin(), values.end(), UnorderedMap::bucket_traits(buckets, 100));

   //Test each element using the key_type (int)
   for(int i = 0; i != 100; ++i){
      assert(omap.find(i) != omap.end());
      assert(umap.find(i) != umap.end());
      assert(omap.lower_bound(i) != omap.end());
      assert(++omap.lower_bound(i) == omap.upper_bound(i));
      assert(omap.equal_range(i).first != omap.equal_range(i).second);
      assert(umap.equal_range(i).first != umap.equal_range(i).second);
   }

   //Count and erase by key
   for(int i = 0; i != 100; ++i){
      assert(1 == omap.count(i));
      assert(1 == umap.count(i));
      assert(1 == omap.erase(i));
      assert(1 == umap.erase(i));
   }
   assert(omap.empty());
   assert(umap.empty());

   return 0;
}

PrevUpHomeNext